PENGERTIAN TURUNAN FUNGSI
Definisi turunan : Fungsi f : x → y atau y = f (x) mempunyai turunan yang dinotasikan y’ = f’(x) atau dy = df(x) dan di definisikan :
dx dx
y’ = f’(x) = lim f(x + h) – f(x) atau dy = lim f (x +∆x) – f(x)
h→0 h dx h→0 h
Notasi kedua ini disebut notasi Leibniz.
contoh soal :
1.f(x)= 2x^3 + 3x^2 -5
maka f(x)' = 12x^3-1 +6x^2-1 -
= 12x^2+6x
Soal ke-1
Nilai turunan pertama dari: f(x) = 2(x)2 + 12x2 – 8x + 4 adalah …
Pembahasan
f(x) = 2x3 + 12x2 – 8x + 4
f1(x) = 2.3x2 + 12.2x – 8
= 6x2 + 24x -8
Soal ke-2
Turunan ke- 1 dari f(x) = (3x-2)(4x+1) adalah …
Pembahasan
f(x) = (3x-2)(4x+1)
f(x) = 12x2 + 3x – 8x – 2
f(x) = 12x2 – 5x – 2
f1(x) = 24x – 5
Soal ke- 3
Jika f(x) = (2x – 1)3 maka nilai f1(x) adalah …
Pembahasan
f(x) = (2x – 1)3
f1(x) = 3(2x – 1)2 (2)
f1(x) = 6(2x – 1)2
f1(x) = 6(2x – 1)(2x – 1)
f1(x) = 6(4x2 – 4x+1)
f1(x) = 24x2 – 24x + 6
Soal ke- 4
Turunan pertama dari f(x) = (5x2 – 1)2 adalah …
Pembahasan
f(x) = (5x2 – 1)3
f1(x) = 2(5x2 – 1)(10x)
Tidak ada komentar:
Posting Komentar